Implantable cooler to temporarily block nerve conduction and ease pain

Soft, bioresorbable coolers for reversible conduction block of peripheral nerves
Reeder et al. developed a soft, miniaturized, implantable cooler to temporarily block nerve conduction using a liquid-to-gas phase transition as the cooling mechanism (see the Perspective by Jiang and Hong). They borrowed the design of electrical nerve cuff and substituted electrical wires with a microfluidic channel carrying a microliter volume of bioinert coolant. A thermal thin-film sensor integrated within the cuff enabled monitoring of the temperature in real time, thus enabling closed-loop control.
Implantable devices capable of targeted and reversible blocking of peripheral nerve activity may provide alternatives to opioids for treating pain. Local cooling represents an attractive means for on-demand elimination of pain signals, but traditional technologies are limited by rigid, bulky form factors; imprecise cooling; and requirements for extraction surgeries. Here, we introduce soft, bioresorbable, microfluidic devices that enable delivery of focused, minimally invasive cooling power at arbitrary depths in living tissues with real-time temperature feedback control. Construction with water-soluble, biocompatible materials leads to dissolution and bioresorption as a mechanism to eliminate unnecessary device load and risk to the patient without additional surgeries.
Author(s) Source
Reeder JT, Xie Z, Yang Q et al.
SCIENCE, 30 Jun 2022, Vol 377Issue 6601, pp. 109-115
This is a post of a scientific or business information. The information given here is checked thoroughly by “Implant-Register”. However we can´t be responsible for the content. The content usually is shortened to make it understandable for many. Read the linked original text if you are interested. Contact the publisher, if you have questions. You may inform us about changes of the information to improve the Register.
Comments: n/a
let us know